Search results for " Linear matrix inequalities"

showing 9 items of 9 documents

A Hybrid Control Strategy for Quadratic Boost Converters with Inductor Currents Estimation

2020

International audience; This paper deals with a control strategy for a DC-DC quadratic boost converter. In particular, a hybrid control scheme is proposed to encompass a control law and an observer for the estimation of the system states, based only on the measurements of the input and output voltages. Differently from classical control methods, where the controller is designed from a small-signal model, here the real model of the system is examined without considering the average values of the discrete variables. Using hybrid dynamical system theory, asymptotic stability of a neighborhood of the equilibrium point is established, ensuring practical stability of the origin, which contains es…

0209 industrial biotechnologyhybrid dynamical systemsObserver (quantum physics)Computer science02 engineering and technologyDynamical systemStability (probability)020901 industrial engineering & automationQuadratic equationExponential stabilitySettore ING-INF/04 - AutomaticaControl theoryswitching systems[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering0202 electrical engineering electronic engineering information engineeringElectrical and Electronic Engineeringlinear matrix inequalitiesEquilibrium pointApplied Mathematics020208 electrical & electronic engineeringobserverConvertersComputer Science ApplicationsHybrid dynamical systems Linear matrix inequalities Observer Quadratic boost converter Switching systemsControl and Systems EngineeringQuadratic boost converter
researchProduct

A robust fault detection design for uncertain Takagi-Sugeno models with unknown inputs and time-varying delays

2013

Abstract This paper investigates the problem of robust fault detection system design for a class of uncertain Takagi–Sugeno (T–S) models. The system under consideration is subject to unknown input and time-varying delay. The fault detection system is designed such that the unknown input is thoroughly decoupled from residual signals generated by the fault detection system. Furthermore, the residual signals show the maximum possible sensitivity to the faults and the minimum possible sensitivity to the external disturbances. The model matching approach is utilized to tackle the effects of parametric uncertainties in the model of the system. The design procedure is presented in terms of Linear …

Engineeringbusiness.industryLinear Matrix InequalitiesComputer Science Applications1707 Computer Vision and Pattern RecognitionLinear matrixT-S modelResidualFault detection and isolationComputer Science ApplicationsTakagi sugenoControl theoryControl and Systems EngineeringSystems designSensitivity (control systems)Time-delayModel matchingbusinessFault detectionFault detection; Linear Matrix Inequalities; T-S model; Time-delay; Unknown input; Control and Systems Engineering; Analysis; Computer Science Applications1707 Computer Vision and Pattern RecognitionUnknown inputAnalysisParametric statistics
researchProduct

Finite-Time H∞ Filtering for T-S Fuzzy Discrete-Time Systems with Time-Varying Delay and Norm-Bounded Uncertainties

2015

In this paper, we investigate the filtering problem of discrete-time Takagi–Sugeno (T–S) fuzzy uncertain systems subject to time-varying delays. A reduced-order filter is designed. With the augmentation technique, a filtering error system with delayed states is obtained. In order to deal with time delays in system states, the filtering error system is first transformed into two interconnected subsystems. By using a two-term approximation for the time-varying delay, sufficient delay-dependent conditions of finite-time boundedness and $H_{\infty }$ performance of the filtering error system are derived with the Lyapunov function. Based on these conditions, the filter design methods are propose…

Lyapunov function0209 industrial biotechnology02 engineering and technologyFuzzy logicsymbols.namesake020901 industrial engineering & automationControl theoryArtificial Intelligence0202 electrical engineering electronic engineering information engineeringFiltering problemnorm-bounded uncertaintieslinear matrix inequalities (LMIs)T-S fuzzy systemMathematicsApplied MathematicsFilter (signal processing)Finite-time boundednesstime delayFilter designH-infinity methods in control theoryDiscrete time and continuous timeComputational Theory and MathematicsControl and Systems EngineeringBounded functionsymbols020201 artificial intelligence & image processingHâ filteringFinite-time boundedness; H∞ filtering; linear matrix inequalities (LMIs); norm-bounded uncertainties; T-S fuzzy system; time delay; Control and Systems Engineering; Computational Theory and Mathematics; Artificial Intelligence; Applied Mathematics
researchProduct

Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps

2014

This paper is concerned with stochastic finite-time boundedness analysis for a class of uncertain discrete-time neural networks with Markovian jump parameters and time-delays. The concepts of stochastic finite-time stability and stochastic finite-time boundedness are first given for neural networks. Then, applying the Lyapunov approach and the linear matrix inequality technique, sufficient criteria on stochastic finite-time boundedness are provided for the class of nominal or uncertain discrete-time neural networks with Markovian jump parameters and time-delays. It is shown that the derived conditions are characterized in terms of the solution to these linear matrix inequalities. Finally, n…

Lyapunov functionDiscrete-time systems; Linear matrix inequalities; Markovian jump systems; Neural networks; Stochastic finite-time boundedness; Artificial Intelligence; Computer Science Applications1707 Computer Vision and Pattern Recognition; Cognitive NeuroscienceArtificial neural networkMarkov chainStochastic processCognitive NeuroscienceMarkovian jump systemsLinear matrix inequalitiesLinear matrix inequalityComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science Applicationssymbols.namesakeDiscrete time and continuous timeArtificial IntelligenceDiscrete-time systemssymbolsCalculusApplied mathematicsStochastic neural networkJump processNeural networksStochastic finite-time boundednessMathematics
researchProduct

On the stability analysis for impulsive switching system with time-varying delay

2014

This paper focuses on the stability and stabilization problem for a neutral impulsive switching system with time-varying delay. Based on LMI method and optimization technologies, some stability criteria are derived for this kind of system. Some example and numerical simulation are given to demonstrate the effectiveness of our theoretical results. Refereed/Peer-reviewed

Mathematical optimizationComputer simulationLinear matrix inequalitiesStability (probability)impulsive switchingImpulsive switching; Linear matrix inequalities; neutral system; Time delay; Electrical and Electronic Engineering; Control and Systems EngineeringControl and Systems EngineeringControl theoryneutral systemImpulsive switchingElectrical and Electronic Engineeringlinear matrix inequalitiesTime delayMathematics2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE)
researchProduct

Robust control of uncertain multi-inventory systems via linear matrix inequality

2008

We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.

Mathematical optimizationLinear Matrix InequalitiesPolytopeDynamical Systems (math.DS)stock control93xxcontinuous systems linear matrix inequalities linear systems manufacturing systems robust control state feedback stock control uncertain systemsimpulse control inventory control hybrid systemsSettore ING-INF/04 - AutomaticaControl theoryFOS: Mathematicsmanufacturing systemsMathematics - Dynamical Systemslinear matrix inequalitiesstate feedbackTime complexityMathematics - Optimization and ControlInventory systemsMathematicsInventory controlLinear Matrix Inequalities; Inventory systemsLinear systemlinear systemsLinear matrix inequality93Cxx;93xxLinearity93Cxxhybrid systemsEllipsoidComputer Science Applicationsimpulse control; inventory control; hybrid systemsuncertain systemsControl and Systems EngineeringOptimization and Control (math.OC)Control systemBounded functioncontinuous systemsPerpetual inventorycontinuous systems; linear matrix inequalities; linear systems; manufacturing systems; robust control; state feedback; stock control; uncertain systemsinventory controlRobust controlSettore MAT/09 - Ricerca Operativarobust controlimpulse control
researchProduct

Comments on “Finite-Time $H_{\infty }$ Fuzzy Control of Nonlinear Jump Systems With Time Delays Via Dynamic Observer-Based State Feedback”

2014

This paper investigates a defect appearing in “Finite-time H∞ fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback,” which the observer-based finite-time H∞ controller via dynamic observer-based state feedback could not ensuring stochastic finite-time boundedness, and satisfying a prescribed level of H∞ disturbance attenuation for the resulting closed-loop error fuzzy Markov jump systems. The corrected results are presented, and the improved optimal algorithms and new simulation results are also provided in this paper.

Observer (quantum physics)Applied MathematicsFinite-time H controlMarkov processTakagi-Sugeno (T-S) fuzzy modelFuzzy control systemState (functional analysis)Fuzzy logicNonlinear systemsymbols.namesakeComputational Theory and MathematicsArtificial IntelligenceControl and Systems EngineeringControl theoryMarkov jump systems (MJS)observer-based state feedbacksymbolsJumplinear matrix inequalities (LMIs)Finite-time H control; linear matrix inequalities (LMIs); Markov jump systems (MJS); observer-based state feedback; Takagi-Sugeno (T-S) fuzzy model; Control and Systems Engineering; Artificial Intelligence; Computational Theory and Mathematics; Applied MathematicsMathematicsIEEE Transactions on Fuzzy Systems
researchProduct

Active-passive decentralized H∞ control for adjacent buildings under seismic excitation

2011

Author's version of a chapter in the book: Proceedings of the 18th IFAC World Congress 2011. Also available from the publisher at: http://dx.doi.org/10.3182/20110828-6-IT-1002.01192 In this paper, a control strategy to reduce the vibrational response of adjacent buildings under seismic excitation is presented. The proposed strategy combines passive linking elements with an active decentralized H∞ control system. The overall active-passive control system admits decentralized design and operation, and achieves an excellent vibrational reduction when the active control system works; in case of a full or partial failure of the active control system, a remarkable reduction in the vibrational res…

decentralized control H-infinity control structural vibration control linear matrix inequalitiesVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413VDP::Technology: 500::Materials science and engineering: 520
researchProduct

Robust delay-dependent H∞ control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching p…

2011

Author's version of an article published in the journal: IEEE Transactions on Circuits and Systems I: Regular Papers. Also available from the publisher at: http://dx.doi.org/10.1109/tcsi.2011.2106090 The problem of robust mode-dependent delayed state feedback H ∞ control is investigated for a class of uncertain time-delay systems with Markovian switching parameters and mixed discrete, neutral, and distributed delays. Based on the LyapunovKrasovskii functional theory, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities for the stochastic stability and stabilization of the considered system using some free matrices. The desired control is …

delay systems H∞ control linear matrix inequalities Markov processes uncertain systems delay-dependent delayed state feedback distributed delays Lyapunov-Krasovskii functionals Markovian switching numerical example Stochastic stability and stabilization sufficient conditions uncertain time-delay system control system stability convex optimization delay control systems stabilization state feedback switching systems time delay uncertainty analysis discrete time control systemsVDP::Technology: 500::Mechanical engineering: 570VDP::Mathematics and natural science: 400::Mathematics: 410
researchProduct